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ABSTRACT 
 
The advantages of thermoelectric energy conversion technologies are briefly summarized.   Recent material 
advances are discussed, with the focus on one-dimensional (1-D) self-assembled molecular materials as building 
blocks for new thermoelectric materials.  The preparation, doping, and thermal characterization of phthalocyanine 
based materials are presented.  The thermal conductivity of the doped material is lower than the undoped material 
even though the electrical conductivity of the doped material is orders of magnitude higher than the undoped 
material.  This is counter intuitive against the backdrop of the Wiedemann-Franz treatment of thermal conductivity 
in electrical conductors from which one would expect thermal and electrical conductivity to both increase with 
introduction of additional charge carriers.  These unusual results can be understood as a competition between the 
generation of an increased number of charge carriers and enhanced phonon scattering resulting from the 
introduction of chemical dopants.  The thermal conductivity of the undoped phthalocyanines has been found to be 
small and only modestly temperature dependent in the 50-300 C range, but it is larger than a previous, indirect 
measurement. 
 
Keywords: thermoelectric, thermal conductivity, phthalocyanine, thermal conductivity, one dimensional, energy 
harvesting 
 
 

1. INTRODUCTION 

In comparison with more well-known energy harvesting technologies, thermoelectric devices offer distinctive 
advantages.  The closest analog to a thermoelectric energy harvesting or power generating device is the photovoltaic as 
both are solid state devices that rely on excitation of charge carriers within semiconductors and produce DC currents.  
However, photovoltaic arrays are limited to daylight hours, whereas thermoelectric modules operate as long as a suitable 
thermal gradient is present.  Batteries of course store energy, while fuel cells convert fuels to electric energy: neither 
harvest energy in their own right.  

Thermoelectric energy inter-conversion technologies can be applied rather diversely:  (1) for energy harvesting of waste 
heat by converting heat directly into electric current via the Seebeck effect; (2) for primary power generation from 
almost any heat source; (3) for cooling and refrigeration via the Peltier effect; (4) for precise temperature control of 
electronic and optical components; (5) for heat pumping and thermal lift to convert low grade waste heat into a higher 
quality heat for better heat rejection.  More than one of these applications can be combined in one device.  For example, 
the use of thermoelectric elements on satellites to control the direction and flow of heat by sandwiching the 
thermoelectric elements between individual components and a thermal bus has recently been proposed1.    Such a 
configuration allows efficient thermal management of each component by its own thermoelectric element. 
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The global economic potential of efficient and cost effective thermoelectric units for energy harvesting is tremendous: it 
has been estimated that about 90% of primary power generation relies on heat engines2, with the majority of the energy 
lost as waste heat.   As shown in Figure 1, two thirds of residential energy consumption is related to heating or cooling, 

 

 

Figure 1:  Residential and commercial thermal energy utilization (data from reference 3) 

while 40% of commercial energy utilization is related heating or cooling.  While not energy harvesting per se, in the 
broader energy picture the impact of cost effective, efficient thermoelectric heating , cooling and electricity production 
make them compelling targets for researching new materials and device configurations.4   

Perhaps the best features of thermoelectric devices is summed up by the following characteristics:  long life (> 30 years), 
maintenance free operation, no moving parts of vibrations, reversibility, independent of g-forces or orientation, no 
electromagnetic emissions, precise control.  While it is commonly held that thermoelectric refrigeration is much less 
efficient than compression based methods, this is in reality only true at larger scales.  As the size of a system diminishes, 
thermoelectric cooling or energy harvesting can become preferred from a systems perspective.  For example, the specific 
energy of a high efficiency Stirling engine at 25 kW is 220 W/kg, a 5 kW NASA Stirling system is 5 W/kg, whereas a 
bismuth-telluride based thermoelectric at 14.7 W has a specific energy of 300 W/kg.   The impacts of thermoelectric 
device designs4, materials5, and their limitations6 are discussed in greater detail in the literature. 

2. NEW MATERIALS 

Thermoelectric devices and materials are typically compared based on the dimensionless figure-of-merit, ZT where Z is 
defined in equation 1, � is the electrical conductivity (S/m-1), S (or often �) is the Seebeck coefficient (V/K), � is the 
thermal conductivity (W/mK), and T is the absolute temperature (K).  For decades the two workhorse materials for 
thermoelectric 
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Thermoelectric devices have been variants of Bi2Te3 and SiGe, the former for modest temperatures latter for higher 
temperature applications, both with ZT~1.  A resurgence of interest in new thermoelectric materials occurred when 
Hicks and Dresselhaus6 predicted significant increases in ZT, up to ~14,  for 1-D materials.  This predicted enhancement 
in ZT arose from two effects: inhibition of thermal transport due to phonon scattering from the surfaces of the wires, and 
confinement of the electrons in 1-D.  While the predicted ZT ~14 materials have remained elusive, this work stimulated 
the field and did result in significant advances among several fronts.  Many of the recent advances in thermoelectric 
materials since the Hicks and Dresselhaus paper have been summarized  recently in several review articles.7-9   
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3. PHTHALOCYANINES 

 
3.1 General Characteristics 
There are perhaps thousands of candidate 1-D charge transfer materials that could that fall within the framework 
espoused by Casian.  Many are laboratory curiosities that have only been prepared on the gram scale or smaller.  Many 
are not thermally stable, and often tedious methods are required for their preparation. 
 
Phthalocyanines fit within the Casian framework, but offer distinct advantage including high thermal stabilities, 
outstanding electrical conductivities when doped, and excellent photochemical stabilities .  They are used as pigments 
and dyes, catalysts, and photodynamic anticancer therapeutics. A metal is usually in the center of the phthalocyanine 
ring structure, as shown for nickel phthalocyanine in Figure 4.  The challenge is to tailor phthalocyanines for desirable  
 
 

 
 

Figure 3: Chemical Structure of Nickel Phthalocyanine 
 
thermoelectric characteristics.  Varying the metal in the middle of the phthalocyanine framework should allow for 
tailoring of the electronic properties with minimal impact on thermal conductivity. 
 
When oxidatively doped, most phthalocyanines become p-type semiconductors due to partial oxidation of the Pc ring.  
Electrical conduction then occurs as the resulting hole travels from one phthalocyanine ring to another.   Besides   
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Figure 4: Schematic Stacking of Oxidatively Doped M-Phthalocyanine (X = dopant counterion) 
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introducing charge carriers, the dopant counterions sit rather loosely in the lattice which should serve to lower the 
thermal conductivity via vibrational effects. 
 
Nanoscopic metallic and semiconductor wires formed from atomic constituents have low thermal conductivites.  
As the diameter of the wire becomes less than the phonon mean free path , phonon scattering off the wire surface 
restricts thermal transport along the wire.2,15.16  In 1-D wires built from molecular components a similar effect 
should hold, but the thermal conductivity will be further lowered since the intermolecular interactions between the 
building blocks are noncovalent.  The interactions along the wire direction is non-continuous, that is, not based on 
chemical bond linkages but is more akin to the weak interactions between graphite planes.  
 
The aim of this work was to prepare pure phthalocyanine materials, characterize the thermal conductivity of the 
undoped materials, then oxidatively dope representative phthalocyanines by high temperature processes and 
examine the effect of the dopant on the thermal conductivity. 
 
3. 2 Synthesis 
 
Preliminary investigation showed that nominally pure commercially available materials were in fact contaminated with 
7-8% chlorine which proved difficult to remove.  Subsequently, all metal phthalocyanine materials were synthesized and 
purified in-house.  The following is typical of the procedure followed, based on published approaches.17 
 
Synthesis of Nickel Phthalocyanine:  Into 1L 3-neck RBF equipped with a mechanical stirrer was added phthalonitile 
(18.34 g, 0.14 mol), nickel (II) acetate tetrahydrate (8.71 g, 0.035 mol) and dimethylformamide (150 mLs).  The mixture 
was heated to reflux (160 °C) while being stirred under an inert atmosphere for 48 hours. The resulting mixture was 
filtered to yield a purple solid which was then soxhelet extractred with water for 24 hours and dried under vacuum at 100 
°C for 12 hours.  The crude product was sublimed  <0.01 torr at 450 °C for 8 hours, resulting in 11.6 g of purple crystals 
(58% yield). Anal.: Calc. for C32H16N8Ni: C 67.28, H 2.82, N 19.62, Ni 10.28%. Found: C 67.13, H 3.01, N 19.52, Ni 
9.98%. 
 
Synthesis of Iodine doped Nickel Phthalocyanine:  Into a 50mL glass ampoule was added nickel phthalocyanine (2.00 g, 
0.0035 mol) and iodine (I2, 1.35 g, 0.0053 mol). The glass ampoule was cooled in a water bath (~ 5 °C) to ensure limited 
evaporation of the iodine and then sealed under 0.01 torr. The glass ampoule was placed into a muffle furnace and 
heated to 520 °C for 6 hours.  Once the ampoule was cooled to room temperature, the ampoule was opened and the black 
crystalline product was rinsed with ethanol to remove excess iodine. The remaining product was dried under vacuum at 
60 °C for 12 hours resulting in 2.67 g of black crystals (92.4% yield).  Anal.: Calc. for C32H16N8I.75Ni: C 57.7, H 2.4, N 
16.8, I 14.3, Ni 8.8%. Found: C 58.0, H 2.4, N 16.9, I 14.8, Ni 8.5%. 
 
3.3 Characterization 
 
All samples were prepared using the following method: sublimed materials were ballmilled to reduce them to a fine 
powder. The powders were then pressed into 28.8 mm diameter pellets under a compressive load of 20,000 lbs. Thin 
sheets of plastic were placed between the metal die-head of the press to prevent sample adhesion and reaction with the 
die itself.   

Thermal conductivity measurements were conducted using an Anter Unitherm 2022 Guarded Heat Flow Meter Thermal 
Conductivity Measuring System which conforms to the ASTM E1530 standard. Since sample diameters were less than 
the hot plate diameters a correction factor was added per manufacturer instructions. All thermal conductivity 
measurements were conducted between 50 and 300 °C in fifty degree increments. The thermal conductivity 
measurements for the undoped phthalocyanines were conducted three times for each sample and values shown in Figure 
5 are an average. The doped sample was only tested once due to sample reaction with the hot plate sandwiching metal at 
higher temperatures. We believe the measurements were not compromised but this degradation, but a confirmation 
awaits fabrication of a non-reactive coating for the hot plate which is in progress. A calibration was performed as 
prescribed by the manufacturer using three calibration standards and the error in the measurements as stated by the 
device manufacturer should be +/- 3% to +/- 8 %. 
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